AFRL-IF-RS-TR-2001-129

Final Technical Report
June 2001

EXTENSIBLE REQUIREMENTS MANAGEMENT
ARCHITECTURE

Odyssey Research Associates

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J779

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

20011005 152

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-129 has been reviewed and is approved for publication.

ALZZMJ{ a au 7

APPROVED: DEBORAH A. CERINO
Project Engineer

FOR THE DIRECTOR: JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

EXTENSIBLE REQUIREMENTS MANAGEMENT ARCHITECTURE

David Rosenthal

Contractor: Odyssey Research Associates

Contract Number: F30602-00-C-0066

Effective Date of Contract: 28 March 2000

Contract Expiration Date: 28 March 2001

Short Title of Work: Extensible Requirements Management
Architecture

Period of Work Covered: Mar 00 — Mar 01

Principal Investigator: David Rosenthal
Phone: (607) 257-1975
AFRL Project Engineer: Deborah A. Cerino
Phone: (315) 330-1445

Approved for public release; distribution unlimited.
This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored
by Deborah A. Cerino, AFRL/IFTD, 525 Brooks Rd, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this hurden, to Washington Headquarters Services, Directorate for fnformation
Operations and Reports, 1215 Jelferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

1. AGENCY USE ONLY Zeave blank/ 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Jun 01 Final Mar 00 - Mar 01

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

C - F30602-00-C-0066
EXTENSIBLE REQUIREMENTS MANAGEMENT ARCHITECTURE PE - 63760E

PR - IAST
6. AUTHOR(S) TA -00

WU -19
David Rosenthal
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Odyssey Research Associates REPORT NUMBER

Cornell Business & Technology Park
33 Thornwood Drive, Suite 500
Ithaca, NY 14850-1250

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Defense Advanced Research Projects Agency AFRL/IFTD AFRLAIF TR2001-129
3701 North Fairfax Drive 525 Brooks Rd IF-RS-TR-2001-1
Arlington VA 22203-1714 Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Deborah Cerino, IFTD, 315-330-1445

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
The goal of this effort is to facilitate the appropriate control of security configuration parameters based on goals and availablg
systems after a cyber attack. This report addresses a method to aid in the reconfiguration of systems after a cyber attack.
Most current research on requirements focuses on how to satisfy requirements under some small set of circumstances -
possibly an expected situation and/or a safe fallback position. When some systems and components have been disabled by
enemy attacks, it may not be possible to meet some predetermined set of system security requirements. In this case, the
cyber commander needs automated assistance in choosing an alternative that represents the best compromise between the
“required" and the achievable. To do this, we have to relate system between the "required” and the achievable. To do this,
we have to relate system requirements to configurable parameter settings and describe precisely how the satisfaction of
low-level requirements affects the satisfaction of requirements at the system level. This will help present decision-makers
with a picture of what configurations are possible and what trade-offs they involve. This work is a first step towards
systematizing this process.

14. SUBJECT TERMS 15. NUMBER OF PAGES
68
security, requirements, reconfiguration 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Fnrm 298 (Rev 2-89} (EG)
Prescribed by ANS| 18
Designed using Perlnrm Pm WHSIDIUR Oct 94

Abstract

It can be very difficult to understand the implications of losing system resources: which
requirements are no longer being met, which could be met (possibly at a reduced level)
by reconfiguration, what tradeoffs reconfiguration must make. The goal of this project is
to improve that understanding—in particular, to aid in reconfiguration after a cyber
attack.

Sometimes an analytical or simulation model—e.g., a model of traffic in the telephone
system—solves the problem by providing a good map between resources and goals.
What is to be done in the absence of such a model, when a complex system has goals that
are heterogeneous, changeable, and not easily described a priori? Most current research
limits itself to a small set of loss scenarios and/or to defining a set of safe fallback
configurations, which may not provide an adequate response to the unpredictable effects
of malicious attacks. To choose a good compromise between the “required” and the
achievable, a cyber commander may need automated support for inferring how the
satisfaction of low-level requirements affects the satisfaction of requirements at the
system level.

To provide that support we must relate the settings of “configuration parameters” to
system goals (for both functionality and security). We propose to make that connection
by systematically factoring responsibilities and requirements among system management,
applications, and mission planning. We investigate the strengths and weaknesses of this
strategy by applying it to examples—a field operations website, security logging on a PC,
managing CORBA security services. We indicate how useful models might be
constructed and sketch a generic “template” as a first step toward systematic development
and tool support.

Table of Contents

ADSErACE a.cueeereiennesnnenrinnecsnensanscsne tsesssssssssessssassssssnnsatesassstsesasesssesensesnssnsannesanres i
LSt OF FHGUTES ccvvrenrersenrecreisniseisnrnsuesessessesuessesessrssssasssssssssessssnsorsssestsssssssassssssstsnssnsnsnnssnce iv

SUMMATY ..oeveeeseiressanssanressansesssnnsancessees reeeesssessestesereessssssssssssasssnesenssessasssstesanans 1

1. Introduction . 2

11 The PrOBIEIM . 2

1.2 The apPrOachcovoeuiieiiiiiiiiec e 3

2. Background.........eereninseresensiesnssssenesnssssssssassnssscsssasnes 4

2.1 TECHNIGUES .eveeiiiiieiic ettt 4

2.2 Analysis fUNCHONS ...cocviiiiiiiiieei e 5

2.2.1 ASSESSING TESOUITES wovviuriiveieiinriaesieeiiese et ss e et 5

2.2.2 Specifications for appliCatioNS.......ccooveveiiieiiiiie 5

2.2.3 Relating resources to application needs. ..o 5

2.2.4 Relating missions t0 OPHONScocciiiiiiiriieiiiit e 5

2.2.5 REPOTHNE oottt etttk et 6

2.3 Requirements management and project management tools ... 6

0 T B 25\ .Y - NP ORI OUIPPRPIR 6

2.3.2 RDD-100/RDD-2000/COREcc.cvtiiiriiiiiiiiiciiiieeitce e 7

2.3.3 SS AT ettt r e e 8

2.3.4 DOORS ..ottt ettt st r e as e e e 8

2.3.5 RequisitePro/UML........ccoiiiiiiiiice e 9

2.3.6 SEATTEAIM ...ieiieeeee ettt ettt se e e s ra s e et e e e esae e be e e 9

3. Example: Field Operations Support Websiteccooeiveicerncnuisesnsnsisecciresnnensarene. 10

3.1 INErOAUCHION tiveicrieeeeie ettt ettt ettt a e et e s b e e a e r e s st sae e e 10

3.2 Regular operation of the SIteooeiiiriiiiiiieie 10

3.2.1 PerSONNE] SILE .. uviiirieeieeeereieeiee ettt st saa e srbe s e 11

3.2.2 AdMINIStration SIte........cciersierieeieiee ettt 12

3.2.3 EMail SYSeIM.ccuiiiiiiiiieieiiciieii i 12

B.2.4 USEIS weeeeieiueeeeeeuteaeieeseteesesesstease e s e st e e aeeesre e sabe e saae e esaeer e e e aassaess s e b e e e anasnneaas 12

3.3 Operating modes of the appliCationsciiieiininiiin 13

3.4 SOME ALACK SCENMATIOS .vviiiuiiieiieiiieeieeeriie et e et e e st a e ena e ase s nn e ae s 15

3.5 Fallback POSTHONS ...oiiiiiiiiiiit ittt 17

4. Example: Logging Security Events on a User PC ... ccniincinvnninninsiiiinnnnns 18

4.1 TNEFOAUCTION «oeeiiiiiii ettt et ce e e e et e e s e et e e s aee e e s s be e e e e 18

4.2 AppliCation MOAES.coiuiiuiiiiiiiiieiiii e 19

4.3 Configuration PArAMELETS ...c.c.ooiiuiriiieiieee ettt 20

4.4 Relating configuration parameters to applications..........cocooviiiiiiiiiiiiiniins 21

4.5 A refinement: REPOItING......ocoioiiiiiiiiiiiiiiii et 21

4.6 DISCUSSION c.vvveereiivreeeeeaeeeeeeeeteasseesteeseaes e saaesuassenseeseeaaeeasbeataesssaas s s essaaseas e ee e snes 22

4.6.1 Better description of applications ..ot 22

4.6.2 AZEIEZAION L.eviuiiiiiiciititeeieie et 22

4.6.3 USET NEEAS....cceeeetie ettt e et et ete s ettt e s eb e et es e e s b e e s st sn e 23

5. Example: A Secure Distributed CORBA Application.......ccecivcissrssiscssissninnnnnnnae 23

i

5.1 CORBA OVEIVIEW ..uveiiniiiiieiieeieeie ettt eee s sseersesas s sat s e s g e s se st enne 23
5.2 CORBA Security SErviCe OVEIVIEWcccvieimiuimiimiirnieeiensieseeiniassesteenceeeneeas 24
5.2.1 POIICY LY PES.uiiiiiiieiiriiirteiet ettt 25

5.2.2 Access coNtrol Xamplecoceiiiiiiirriiriiciiie e 26

5.3 Secure distributed CORBA applicationcccoovimiiiiiiiiinciiins 27
5.4 Support for the system adminiSIALOToceoviieiirietiriir s 29
5.5 The System Administrator’s Decision Process ... 30
5.6 Example fallback pOSItIONSccoovoveiioiiiiiiiii 32
5.6.1 CORBA Security Service Level 2 ... 33

5.6.2 CORBA Security Service Level | ... 35

5.6.3 CORBA SSL....oiiieiiiieieeiteseecee e sttt eas s s s 36

5.6.4 BASIC SECUIILY .vvtrureeieereiericicset ettt st 37

5.7 AULOMALION ...cutiiiiiieieit et ettt e ee et e e ettt er s s e e b e as s e e s bt e et e s st 38

6. Formalismcuceu.... .39
6.1 VOCADUIATY ..ottt e 39
6.2 MOGELNEZ oottt et e 40
6.2.1 SYSLEIMS .ottt 40

6.2.2 CoNfIGUIAtION ...ocviiiieicieeeeeetecictee et 40

.2.3 ASSEES ..ecvveeeeeeeieeieee et e e e ettt r e et s et e h e s e e Re et 40

6.2.4 Requirementsccovvvveevvienrencens et ee e e e a— et sa e s e e st e e aree s 42

6.2.5 APPHCAIONS ..oeiiiiiiiiiii it 42

6.2.6 INLEETALION ..ccuiiiitiiiieit ettt 43

6.3 A ZIAMITIAL c..c.eteteieneenietieieste et rs e et b e b e s et b st e s n bbbt 43
6.4 Potential analysis SUPPOTT......ccoucuriiiiiiiitiiieieieit ettt e 53

7. Tech TranSEr cuunccreeiieeiseeecesesnesssasnnessnsissssesssnssssisssscsssssassssssnsassasansssnsnssssnssssnsesses 54
8. Conclusions and Recommendationsc...ccceceerivniessnecssnncssacissassesscssasscsserassssasssnnses 54
8.1 RESULLS c.oviiieieetie ettt ettt ettt n b b e bbbt e b e ettt 54
8.2 RecOMMENAALIONS ..iouviririeriieiiieeieeit ettt 54

0. REfEIeNCES cccvvirrsnriserssuerssnacssecsansssesssessanessecsnsassasssnssssessessse .54

iii

List of Figures

Figure 3-1: Field Support Site DIiagramc.oooommininiiie 1]
Figure 5-1: Basic CORBASec model. ... 24
Figure 5-2: Security domains and objects for the bank example ... 27
Figure 5-3: Example secure distributed CORBA-based system ... 28
Figure 5-4: Under the auspices of the CORBA Security Service, a client cannot call an
application Server dir€Ctlyoooe oo 29
Figure 5-5: Possible levels of security for the distributed applicationc.coooveennnen. 29
Figure 5-6: System administrator decision POINEScouevieiiiiiiiin 31
Figure 5-7: Groups of users of the sample distributed application ..o, 32
Figure 5-8: Ideal mapping of groups and users to security domainsc.cccoocoereinienne. 33
Figure 5-9: Composite dele@ationoooeieiiiriiinieinei s 34
Figure 5-10: Fallback position, supporting fewer security domains............oovovreiicnnnne. 35
Figure 5-11: Level 1 access Model. ... 36
Figure 5-12: Constellation of applications in the CORBA SSL mode. ..., 37
Figure 5-13: Servers and clients that can be launched in the Basic Security Mode 38

iv

Summary

If system resources are lost, as the result either of accident or of a deliberate attack, the
consequences for overall system goals can be very difficult to understand. This joint
project by Odyssey Research Associates and CoGenTex attempts to improve that
understanding—in particular, to aid in reconfiguration after a cyber attack. We wish to
help system administrators to determine what requirements are no longer being met and
to present decision-makers with a picture of what reconfigurations are possible and what
tradeoffs they involve.

Some tightly focused problems—e.g., understanding traffic in the telephone system—are
already supported by analytical or simulation models capable of providing a good map
between resources and goals. But many complex systems have goals that are
heterogeneous, changeable, and not easily described a priori. Most current research
applies some combination of two basic strategies: Mask faults by fault tolerant techniques
for managing redundancy; define a set of safe fallback configurations that provide
acceptable responses to anticipated loss scenarios. But these strategies may not always
provide an adequate response to the unpredictable effects of malicious attacks.

What other options are available for more flexibly relating resources and goals? We
suspect that the complexity of the problem will overwhelm both top-down and bottom-up
strategies, because the distance between the concrete parameters that a system
administrator can set and the system’s goals is so large. So we start in the middle and
work in both directions. This amounts to a way of factoring responsibilities among
system management, applications, and mission planning.

We introduce mid-level abstractions of application programs that specify their “modes of
operation” and the resource requirements for each mode. Typically, only a vendor or
domain expert would have the knowledge to write such specifications. The coarseness of
this abstraction is its virtue. One overwhelming problem is reduced to two that are
merely very difficult: relating concrete configurations to the application modes they
support and relating available application modes to more general system goals.

The specific question we consider is how a system administrator might adjust “security
configuration parameters”—such as the kinds and amounts of audit logging—in order to
compromise between requirements for security and functionality. We investigate the
strengths and weaknesses of our strategy by applying it to some simple examples—a field
operations website, security logging on a PC, managing CORBA security services. We
make a first step toward systematizing this method in a way that could provide a basis for
automated tool support.

1. Introduction

1.1 The problem

Typical strategies for operating with damaged or failed components may not respond
adequately to the unpredictable damage that can result from a malicious attack. These
strategies seek to mask faults (by replication, voting protocols, etc.) and/or to define
degraded modes of operation that accommodate anticipated patterns of damage.

Recovery from a cyber attack may require a more flexible response. This report
considers the specific problem of reconfiguring a system by adjusting its “configuration
parameters”—that is, decisions about such things as what events will be audited and how
long audit records will be kept. These parameters determine what security services are
provided (therefore, what security requirements can be satisfied) and what resources
those services consume. Administrators may change them in order to effect tradeoffs
between security and other goals. We wish to provide an analytical framework for
making those tradeoffs, one that could serve as the basis for a degree of automated
support.

In the abstract, it does not matter whether an administrator is configuring a system
initially or reconfiguring after resources have been lost—but we are particularly
interested in reconfiguration after a cyber attack. In that case, the problem becomes acute
because time is short and because unpredictable losses may mean that no pre-planned
response is satisfactory. In the abstract, it does not matter what parameters are being
adjusted. The fundamental problem is always the same: how to connect high-level goals
with concrete parameter values.

Consider a simple example. Suppose that a system, when functioning normally, collects
intrusion detection records, but that a cyber attack has degraded the available computing
resources. Suppose that the Information Officer/Cyber Commander wants to reduce the
resources consumed by the intrusion detection system until certain key mission objectives
are met—and, of course, wants to avoid degrading security capabilities more severely
than necessary.

What are the alternatives? A complete analytical solution to the problem seems out of
the question: The security consequences of small cutbacks in collecting intrusion
detection records depend, radically, on what attacks are actually launched: losing
information that is 3 months old may allow certain attacks to proceed unnoticed, may
delay the detection of others, and on others may have no impact at all. Theoretically, one
could estimate the effects with a statistical model—but for a number of reasons we
believe such a model is unlikely to succeed. At the other extreme from fine-tuning is the
(bad) solution of simply turning off security capabilities in an ad hoc way.

Unfortunately, this “solution” is often adopted because people making decisions do not
understand their implications. There is a middle position: Find ways to help
administrators make the right decisions by providing an informative “view” of their
situation and, where possible, automated support for choosing the right settings. By

properly parameterizing configurations, we can support flexible, reusable analysis. Such
a strategy does not preclude the use of fallback solutions, which may often be sufficient.

1.2 The approach

Our approach is conceptually simple but, as will be seen, not particularly easy to
implement. We structure the description of a system around the dependencies between
resources and services. This description forms the basis of a design process that
recognizes multiple objectives and the complex interdependencies between them. It
designs for the possibility of loss by making explicit the information necessary to
understand the functioning of a damaged system. By contrast, a “standard” design
process decides what resources are necessary to meet a system’s goals and anticipates
damage in two ways: by providing fault tolerance (where possible) to reduce the
possibility of falling into a degraded state; and/or by anticipating what kinds of damage
are possible and defining fallback modes to accommodate them. These standard methods
are adequate for many environments. They will be strained when mission objectives and
security concerns are difficult to anticipate at design time (as in a system used for a
variety of heterogeneous purposes, and having constantly changing “missions”) or when
a cyber attack has caused unpredictable forms of damage.

Our methods factor responsibilities and requirements among applications, system
management, and mission planning. We rely on the vendors of applications and services
to define modes of operation for their products, along with the resources required and the
services provided by each mode. These modes determine the granularity of the system
description. We similarly rely on system administrators to indicate how underlying
resources are configured (perhaps with automated support for discovering these settings).
Mission specialists are responsible for assessing how well the functionality/security
available meets their needs at a particular time. We will show by example how this basic
data may be organized into system descriptions that help us to infer the effects of security
settings on the modes in which the system may operate.

Descriptions in our style contain “slots” corresponding to clearly posed problems that
may be difficult to solve. One example is the problem of specifying the properties of an
aggregated or “summary” resource. Suppose that disk space is available on a variety of
networked machines and that software mechanisms support its use in a distributed
fashion. How do we describe “the” storage provided by these disks in ways that we can
usefully relate to the needs of applications? The total capacity of the available disks is
relevant, but so are network delays—and so, therefore, is the performance of the
underlying network, which may itself be damaged. The question arises not only when

making “normal” use of applications with constrained resources, but also when a critical

situation makes it necessary to use an application “abnormally.” Solving specific
instances of such problems—whether by analytic methods or simulation—is outside the
scope of this investigation. We can only argue that the “slots” occur in the right places,
identifying important concerns.

System descriptions created by our methods are examples of structured requirements.
Many existing systems for requirements managements—including EMMA and SSAT'—
exploit this style. It should therefore be possible to incorporate our methods into COTS
products, forming the basis for support tools that

o infer relations between security settings and the available modes of operation
 help relate security settings to mission objectives (not discussed in this report)

e cooperate with resource monitoring tools to respond to attacks automatically

This work is exploratory. In particular, tests that compare our approach to “standard”
methods—for example, by simulation—are premature. Sections 3, 4, and 5 consider a
number of simple examples. Section 6 contains a preliminary sketch of a generic model
that could serve as a basis for systematic development and tool support. The possibilities
for tech transfer are briefly discussed in section 7; and section 8 provides some final
observations.

We begin by describing some existing tools for requirements management and some
work related to our approach.

2. Background

2.1 Techniques

Maintaining a system that can operate in varying environments, and will tolerate some
amount of damage, is a longstanding and much studied engineering problem. The oldest
solution is to design modes of operation that can function with given sets of resources.
More recently, fault tolerant techniques have been developed to mask failures by
introducing and managing redundancy.

The problem we are addressing includes two significant complications, both of which
limit the usefulness of design-time solutions: The kinds of damage that might arise from a
cyber attack are difficult to predict. The system’s mission (and, therefore, the relative
importance of specific system capabilities) will vary. As a result, any comprehensive set
of operating modes or fallback configurations may be prohibitively large (particularly at
fine levels of granularity, such as specifying the amount of disk space one should allocate
to auditing). For certain constrained problems (e.g., network recovery), specialized
techniques may be available to aid reconfiguration decisions (see Section 2.2). The
engineering support described here is more general, although these techniques have a
natural place within our methods.

Traditional design-time techniques should be used, as far as possible, to help tolerate
cyber attacks or define fallback positions, but we must also allow for reconfiguration

"EMMA and SSAT originated in some of our earlier work on requirements management. The
current work goes beyond them to consider situations in which the set of available resources is
much less predictable.

during operations. For example, the commander of an under-performing system may
decide to limit auditing, in order to reduce the system load, but may still wish to maintain
some appropriate, if lower quality, security capabilities.

No existing tools address our problem directly, but many provide services (project and
requirements management) similar to those we require and many provide analysis
functions that our methods could exploit directly. Section 2.3 describes some
management tools of particular interest and briefly discusses the possibilities of
integrating our methods with them. Section 2.2 briefly discusses the kinds of analysis
functions that are relevant.

2.2 Analysis functions

Our methods often presuppose the availability of solutions to particular problems, such as
estimating the storage requirements for an auditing log or the performance impact of
adding or eliminating certain processes. It is our job not to develop such tools but to
show how existing (or future) tools could be exploited within a general framework for
helping to solve reconfiguration problems. This section organizes our needs into a few
broad categories—in all of which there currently exists at least some tool support.

2.2.1 Assessing resources

The basic questions we consider ask what conclusions can be drawn “given that certain
resources are available.” The obvious question is: how is this information given? There
is a wealth of monitoring tools for determining the configuration of a system, the status of
network nodes, performance statistics, etc.

2.2.2 Specifications for applications

As will be seen, our methods require that vendors describe their applications in terms that
allow us to relate the availability of resources to the functionality of the application. The
obstacles to obtaining such specifications are at least as much practical and political as
they are technical.

2.2.3 Relating resources to application needs

Whether the combination of available resources really meets an application’s resource
requirement can sometimes be hard to compute. E.g., will a reconfigured network meet
the bandwidth needs of an application? Numerous techniques and tools have been
developed to support this analysis for various specialized problems.

2.2.4 Relating missions to options

It may be difficult to understand in what sense a collection of applications operating in
particular modes will meet the overall objectives of the organization. For example, what
functionality and security is necessary to meet the current mission requirements and to
cope with some current cyber attack. There is ongoing research on mission modeling
approaches and tools that could facilitate this.

2.2.5 Reporting

To support high level decision-making tools must generate suitable reports. That
problem is addressed partly by our modeling methods (which attempt to articulate
information so that it can be expressed without confusing low-level detail) and partly by
the technology of report generation. There is a rich supply of tools for report generation
(including tools by CoGenTex).

2.3 Requirements management and project management tools

We indicate how some of our proposed methods might be integrated with some COTS
products and research prototypes for project and requirements management.

23.1 EMMA

The Evolution Memory Management Assistant (EMMA [1]), developed by CoGenTex
for the DARPA Evolutionary Design of Complex Systems program, is a meta-model and
tool that provides a convenient structure to explicitly record the following types of
information:

1) The properties that a system (or component) must fulfill and the context under
which it is to be developed.

2) The planned sequence of releases of a system, and the information about what
system properties and context elements will be available in what releases.

3) The alternative solutions considered for each system component.

These features together provide information management to support the development and
evolution of a complex system. They allow for reasoning about interdependencies of
subsystems and about what each member of the development team is expecting from the
others. EMMA supports developers in thinking in terms of system evolution rather than
the separate activities of system development and system maintenance. By explicitly
representing alternatives and future releases, developers have a convenient way to record
their thoughts about why they made the design decisions they made and what future
circumstances would cause them to revise those decisions.

Design evolution information in EMMA is organized around five interrelated concepts:

e Functional requirements;,

e Context. assumptions, resources, and design constraints under which those
requirements are to be achieved,

e Development goals, which cluster related requirements and the associated context
information;

e Solutions, which are software engineering approaches to meeting those goals; and

e Evolutionary Changes, which may alter requirements, context, goals, or solutions.

The goal of EMMA is to manage information used in software development throughout a
system’s life cycle. EMMA differs from other tools in several respects: (1) EMMA
manages not only the system requirements that developers must satisfy, but also the
context in which the developers develop the system. This contextual information
includes assumptions about the operating environment and user behavior of the fielded
system, as well as assumptions about externally supplied products (tools, infrastructure,
etc.). (2) EMMA supports explicit planning of software evolution. Following the
release-based software development model, EMMA enables developers to plan for
several future versions of a system at once, so that the system can be built not only to
satisfy current requirements, but also to anticipate future requirements. (3) EMMA
supports communication among all the members of the development team, including
project managers, software designers, and software developers. (4) EMMA relates
system development tasks to technical issues, to help make sure that all members of the
project are informed about the consequences of development decisions.

Like project management tools such as Microsoft Project, EMMA partitions work on a
project into a number of smaller parts, and allocates each part to one or more members of
the development team. Also like project management tools, EMMA keeps track of the
dependencies among parts of a large project. However, in project management tools, the
emphasis is on scheduling and resource allocation for tasks, while in EMMA the
emphasis is on assumptions and requirements for system components. In project
management tools, there is no convenient way to connect the various tasks with system
components, and there is no way to automatically determine functional dependencies
among tasks; these dependencies must be inserted by hand. On the other hand, EMMA
keeps track of dependencies among system components in terms of the properties and
assumptions declared for each component. In this way, EMMA has a more detailed
understanding not only of dependencies, but also of the reasons (rationale) for
dependencies. Thus, EMMA is more flexible in considering contingencies and
alternative approaches to building a system. Because EMMA is not concerned with
scheduling or with resource allocation, its functionality is complementary to that of a
project management tool.

A drawback of trying to directly incorporate the ideas of the current effort into EMMA, is
that EMMA is not a COTS product. Thus, the tech transition path with a pure EMMA
approach would be difficult. An alternative is to incorporate some of the key ideas of
EMMA and the new ideas of this project into COTS product.

2.3.2 RDD-1060/RDD-2000/CORE

RDD-100 [2] is a comprehensive package for supporting system engineering developed
by Ascent Logic Corporation. The RDD-100 system is used to manage, analyze, specify,
track and record decisions, verify and document large complex enterprises and/or
developments. RDD-100 contains a System Description Database that is used to
maintain a consistent description of a system across a number of possible presentations.
With RDD-100, systems are described using graphical behavior diagrams. These
diagrams can be automatically converted into the more traditional styles of Functional
Flow Block Diagrams (FFBDs) and the Integrated Definition Language (IDEFO), which

is an adaptation of the SADT notation. The behavior diagrams can be refined in a
hierarchical manner and viewed in a number of ways. This information can be exported
though external text files, called “rdt” files.

RDD-2000 extends the RDD-100 tool with a client-server data model, enhanced user
interface, and task-oriented work model. It includes features for comparing versions, and
variants on models, as well as metrics on various program aspects such as change,
productivity, and documentation. It has a public API for accessing and modifying model
information.

The CORE tool [3], developed by Vitech, is similar to RDD-100 in both functionality and
style. It has a flatter representation of behavior than the RDD-100 behavior diagrams.

(In particular, there is no separation of a system into "FNET" and "RNET" behaviors.)
The latest release of CORE that was just announced, version 3.0, supports a public APL

The recent enhancements of these products with better support for third-party interaction
with the underlying data, makes potential integration of the ideas from this effort much
simpler then it was a few years ago. Thus, a transition with these technologies is
plausible. However, UML based modeling has become increasingly popular and may be
a preferred approach.

2.3.3 SSAT

The System Security Analysis Tool (SSAT [4], [5]) methodology, created by ORA, helps
systems designers who are not necessarily security experts to construct assurance
arguments using composability arguments. SSAT enforces and extends an NSA System
Security Profiling methodology for constructing assurance arguments. SSAT provides a
library of generic security models for systems. A system designer can use these generic
models to decide what top-level requirements are necessary to supply a certain type of
security assurance on the system, and also to partition those top-level requirements into
requirements on the components of the system. Then the designer must ensure that the
system to be designed is an instance of the generic model, by discharging various
requirements.

The ideas surfaced in this approach may be useful in handling situations in which
subsystems may need to be replaced with equivalent, but not identical properties.
However, before we deal with this approach more fully, we first need to understand how
to control situations in which the parameters are simpler (such as the amount of disk
space that can be used for auditing). '

This tool was based on CORE and the recent upgrades to CORE should make
incorporation of the SSAT ideas and the new ideas of this project tractable. However, as
noted above, it might be better to transition the ideas using a UML based approach.

2.3.4 DOORS

DOORS [6] is a requirements traceability tool which provides extensive support for
managing shared structured data. Its data model is very general: information is organized

into modules, each of which is a hierarchical collection of objects. Each object has a
number of attributes, and structured links to other related objects. DOORS provides a
convenient “drag and drop” interface for quickly making links between objects. It also
provides a wealth of different options for importing and exporting structured data---as
Word documents, Microsoft Project data, HTML, etc. DOORS provides a very flexible
and useful framework for collaborative recording and modifying requirements data.
DOORS does not assume any particular metamodel. Although this greatly increases the
flexibility of using DOORS, it eliminates the possibility of any automated heuristic
support in maintaining consistency, or checking for completeness. Such automated
support would have to be implemented as third-party “critic” programs that worked from
DOORS data. One interesting possibility would be to implement our metamodel in
DOORS. This would amount to defining a set of module types, object types, attributes
and link types that would be meaningful in our metamodel, and then writing the analysis
tools such as dependency checkers as various critics on the DOORS structure. Although
DOORS does not provide any type checks or other consistency checks on its structures, it
would be possible to write a report generator that created reports on problems found with
a solution structure represented in DOORS. The only thing that may be difficult to do
using DOORS would be to provide interactive support for making a sensible solution
structure. Of course, it can all be done after-the-fact via critics on DOORS export files.
Many of our metamodel’s concepts are completely missing in DOORS, such as the
notion of the distinction between properties and context. But that is to be expected, since
it is really a generic tool for managing shared structured data.

2.3.5 RequisitePro/UML

Requirements management tools such as RequisitePro {7] share with EMMA the concern
with system requirements and collaborative information management among participants
on a project. Requisite Pro supports team-based requirements management. It allows
project team members to prioritize, sort, and assign responsibilities for requirements. It
also provides dependencies among requirements, which can be used to trace the
relationships among parts of a project (or even among different projects) and supports the
computation of the impact of a change of requirements. Finally, like EMMA,
RequisitePro supports the recording of requirements changes, including who made the
change, at what time, and why. While much of the functionality of RequisitePro is
similar to that of EMMA, EMMA’s notion of a solution structure provides a framework
for reasoning about requirements and the components built to satisfy them. Also,
EMMA'’s notion of a sequence of releases provides a temporal dimension for reasoning
about requirements that is missing in pure requirements management tools. In these
ways, EMMA provides more structure on which to hang requirements and reason about
them.

2.3.6 StarTeam

Configuration management tools such as StarTeam [8] provide functionality that is in
some ways similar to that of EMMA. Like EMMA, StarTeam is a collaborative
information management tool. It keeps track of differences between versions of a
software product. It supports future releases indirectly, by tracking the handling of
change requests. Like EMMA, StarTeam supports distributed projects. However, the

emphasis of StarTeam is mainly on configuration management, and annotating versions
of a software product with information about how it differs from earlier versions (and
why the changes were made). In contrast with EMMA, StarTeam is not concerned with
planning future evolution of a system, but is instead concerned with documenting past
evolution.

3. Example: Field Operations Support Website

3.1 Introduction

This example considers a website that supports combat personnel and strategic decision
makers in combat situations. The site provides an umbrella for services that take their
inputs from a number of different sources.

The strategic decision-makers referred to, generals and certain field commanders, may
little or no knowledge of the low—level requirements of the applications running on the
site. Their primary concerns are aspects of the battle.

Administrators supervise the day-to-day running of the website. They are also responsible
for understanding the resource requirements and making the actual settings that affect the
running of the website. As such they may have little understanding of the strategic
requirements of the war.

The example considers the regular operation of the site and then examines some
scenarios when the site is attacked and resources become scarce. It tries to show the goal
clashes that may occur between the decision makers and the administrators, as they both
try to do their respective jobs when conflicting resource requirements arise.

3.2 Regular operation of the site

The website shown in Figure 3-1 supports field operations during combat. It hosts two
separate web servers (for security purposes) that host one website each.

10

Intgrnet
P S

/.

Site Umbrella

<
v/

A 4

Email System

A

A 4
Personnel Site

A

Administration Site

A

A

Weather Target & Ally Weapons FTP Authentication
monitoring Location inventory
Authorization
X X T T
[~ Database 4
Security
Logistics

Figure 3-1: Field Support Site Diagram

We briefly describe the components in more detail.

3.2.1 Personnel site

The personnel site hosts the support services for field operations, as shown in Figure 3-1
and are listed below:

o Weather monitoring System —Displays weather updates on a map, emphasizing
bad weather patterns. It also sends out weather warnings and advisories, by e-
mail, to authorized requesting personnel. E-mail updates are independent of the
web-site status. The system takes inputs from a satellite and from advisories
posted by authorized meteorologists belonging to the administrators group.

e Turget and Ally Location —Displays the status of troop deployment and enemy
targets, indicating the positions of both on a map. It can function in two modes:

Passive — In the passive mode, the requested map is created as a bitmap and
sent down to the user’s browser. The user may look at the map and click on it
to get zoomed or panned views. This involves making round trips to the server
to fetch a new bitmap, which may cause critical delays in the field.

e Interactive - In the interactive mode, the client browser launches a program
that allows the client to interactively zoom and pan the image at the client end.
It also allows field personnel to add their own information to the map and
send it back in an encrypted form. This requires that specially encrypted
custom HTML headers be sent to the browser to tell it which application to
launch. If these headers are compromised, the enemy might be able to figure
out which program is being used and simulate the program or insert false
headers and create chaos.

e Weapons inventory — Displays the current inventory of weapons available at the
base and may also be used to file updates on weapons spent in the field. It is
linked to the logistics database.

e FTP Service— Allows authorized users to write and read encrypted files to the
server. Shares a machine with the web server.

e Authentication and authorization — Allows personnel to log in to use the site. This
service is linked to the security database and can operate only if the security
database is up and running.

The web server hosting the personnel site logs to files residing on its own machine.

3.2.2 Administration site

The administration website is hosted on the second web server and provides a set of
administration features for managing the web servers, the two websites, and the
databases. It is accessible from the intranet and has a very high level of security. It hosts
tools for updating the personnel website and the administration site.

3.2.3 Email system

The email system is made up of two outgoing email servers and one incoming mail
server. One of the outgoing mail servers sends out email with 128-bit encryption, while
the other server uses 64-bit encryption. Given the state of current technology, 64-bit
encryption can be hacked, but 128-bit cannot. The email system is used by several parts
of the site. In particular, the weather system sends email warnings of inclement weather
and personnel use email to communicate.

3.2.4 Users

There are essentially three types of people who will interact with some portion of the site:

e Administrators check for signs of intrusion and pull the switches on the controls.
They primarily use the administration site and look at the personnel site only to
keep an eye on its working.

e Strategic Decision Makers use several parts of the personnel site and may have
access to the administrative site to post updates on the situation or to send out
communications.

e Combat Personnel are the primary users of the personnel site. They use it to
update their current location on the maps and send them back to the site, as well

12

as to check on enemy movements, weapons availability, updates on the weather,

and any special communications.

3.3 Operating modes of the applications

Looking at the resource requirements of the components and services in various modes of
operation will indicate the necessary constraints on the resources for the component to

operate in a particular mode.

Component: Web Server

The web server has three modes: Full service to a selected few, Limited service to all, No

service.

Mode Name: Full Service to a selected few

Description: All services up, available to only some selected IPs.

Resource

Constraint

Network connectivity

Set filters and allow only selected IPs in.

Disk Access

20 MB space, enough for the web server to log
and to serve out files.

Database Access

Read and write access for both databases.

Mode Name: Limited service to all

Description: Only a few selected services are made accessible to all. It
is assumed that some of the hits to the site will be fake traffic.

Resource

Constraint

Network connectivity

High Bandwidth, no IP filters.

Disk Access

10 MB, enough to serve files and log selected
events.

Database Access

Read and write access for both databases.

Mode Name: No service to anyone.

be served.

Description: Only a single page, displaying “Site Not Available” will

Resource

Constraint

Network connectivity

Low bandwidth.

Disk Access

None for internet users.

Database Access

Read and write access for both databases.

Component: Target Location System
The target location system has two modes: Interactive, Static.

Mode Name: Client-side Interactive.

Description: Client launches interactive application. Browser needs to
be sent specially encrypted headers to start the application.

Resource

Constraint

Client side program

Special headers with encryption required.

HTML headers

Header must contain the name of the
application to be launched on the client side

Mode Name: Client-side Static.

Description: In the static mode, the client browser merely interprets the
data as HTML and shows the map.

Resource

Constraint

HTML headers

No special headers required.

Component: E-Mail System

The email system has three modes: Fully functional high-encryption, fully functional

low-encryption, Incoming only.

Mode Name: Fully Functional with High Encryption.

Description: Both Incoming and outgoing email allowed, outgoing mail

is 128-bit encrypted.
Resource

Constraint

Incoming mail server

Running

Outgoing mail server

High encryption mail server required

Mode Name: Fully Functional with Low Encryption

is 64-bit encrypted.

Description: Both Incoming and outgoing email allowed, outgoing mail

Resource

Constraint

Incoming mail server

Running

Outgoing mail server

Low encryption mail server required

Mode Name: Incoming only

Description: Only incoming mail allowed. Outgoing blocked.

Resource

Constraint

Incoming mail server

Running

Outgoing mail server

None required

Component: Weather Notification System
The weather notification system has two modes: Fully functional, Update only.

Mode Name: Fully Functional.

Description: System posts weather conditions on the website and also
sends email to notify the soldiers of inclement weather.

Resource Constraint
Weather Satellite Unrestricted access
Email system Must allow outgoing email.

Mode Name: Website update only.

Description: Email notifications are not sent. The website gets updated
every 24 hours. '

Weather Satellite Unrestricted access

Email system Not required.

Component: FTP Service
The FTP service has two modes: Fully functional, Write only.

Mode Name: Fully Functional.

Description: Allows internet users to get and put files.

Resource Constraint
Disk Space Space allocation must increase dynamically to
allow users to put in new files.

Mode Name: Read only

Description: Allows internet users to only get files.

Resource Constraint
Disk Space Only as much as required by previously stored
files is allocated. Allocation remains fixed.

Mode Name: Write only

Description: Allows internet users to only put files.

Resource Constraint
Disk Space Space allocation must increase dynamically to
p
allow users to put in new files.

3.4 Some attack scenarios

To support operation in any particular mode, the resources required by a component or
service must satisfy specific constraints. Under attack conditions, resources such as disk
space, bandwidth, and database access may be reduced or compromised. Decisions have

15

to be made about what modes to run the services in, given the quality of service levels
available from the resources and the components of the system.

Sometimes, the demands of a strategic decision maker to operate certain components in
certain modes may place incompatible constraints on resources. The administrator, in
order to resolve the situation, must present the best possible set of working choices to the
decision maker, based on the resource constraints. Two such examples are described
below.

Loss of an email server

e The high encryption outgoing mail server has been hacked and must be shut down
to prevent the attackers from sending out fake messages.

e Therefore, either the low encryption mail server must be used or the mail service
must be set to “Incoming Only”.

¢ Because of the possibility of a sudden storm, the General would like the weather
system to operate in the “Fully functional” mode.

e The administrator may therefore put the weather system in the “Fully functional
mode” and put the email system in the “Fully Functional with Low Encryption”
mode or he may use the “Website update only” mode of the weather system and
set email to “incoming only”.

e The administrator can present the general with two options:

e Enabled emailed emergency weather updates and risk having messages
hacked, which might compromise troop position.

e Order soldiers to check the website every 24 hours and risk missing a storm
warning, if it occurs between checkups.

Denial of service attack

e The FTP service is set to “fully functional” mode and is being deluged by a flood
of files being written to the FTP site, as part of a hacker attack. These files are
consuming increasing disk space.

e The web server is set to “Full service to all” mode and is running out of disk
space to log, as the FTP service is consuming all available disk space, and they
share the same storage device.

e Any mode of the web server requires some disk space for logging. If the FTP
service is left in the “Fully functional” mode or set to the “write only” mode, the
web server would stop operating. Hence the FTP service must be degraded to
“Read only” mode.

e The administrator again presents the general with two choices:

o Risk losing vital field reports, which are sent in via FTP, but keep the website
functional, thereby providing field personnel with critical support.

e Abandon the website in order to keep the field reports.

3.5 Fallback positions

One of the ways to address the conflicts that arise from resource shortfalls is to adopt one
of a number of pre-computed fallback positions that produce an acceptable tradeoff
between the operational and security requirements.

The following lists some possible fallback positions.

During Denial of service attack:

Settings

Results

1. Activation of filters, denying connections
to all but those with special IPs.
(e.g. Commanders).

Denied personnel can still communicate by
Email.

OR

1.Target and ally location service
banned to a majority.

2.Commanders get full functionality,
uninterrupted.

3.Less chances of information being
compromised.

4.Communication still possible by
means of email access with those cut
off.

2.0Only filter out IPs suspected of being
compromised.

OR

|.Greater risk of attack.

2.All services fully accessible to a
majority of the personnel.

3.Set no IP filters, but reduce bandwidth
support to all but select IPs

and
Cut off E-Mail Access to all.

1.All services accessible every
authorized user.

2.Attack might still cause significant
impact to the availability of services to
all including the special IPs.

3.Increase in the amount of time to
access services for a majority.

Longer access times to information for
authorized personnel may mean critical
delays in the field.

4.Less chances of being spammed.

17

During Database Break-In:

Settings Result

1.Offline the logistics database and I.Chances of security information being stolen
leave the security database online. exist.

2. Location information, weapons, and
inventory unavailable.

3.A hacker may insert false identities into the
OR security database.

4 Legitimate updates to the security database
to weed out false Ids and temporarily disable
logins of suspected infiltrators are still

possible.
2.Change permissions on both DBs 1.No updates of information possible.
to Read-Only Hence Some real time data may not be available

2.Possibility of security information being stoler
3.Possibility of logistical information being

OR stolen.
4. Website services accessible to legitimate users
3.Leave both databases online. 1.Real time inventory and location updates
possible.

2.Possibility of data integrity being
compromised by hacker is increased.
3. All services accessible to legitimate users.

A tool could give the administrator the information from the “Results” column, for a
combination of settings of the resource switches.

4. Example: Logging Security Events on a User PC

4.1 Introduction

This example considers the relations between two security applications—attack
assessment and intrusion detection—and the configuration parameters that control
auditing in Microsoft’s NT version 4.0.

Intrusion detection systems search the logs for patterns of suspicious activity. Attack
assessment tools search for clues that help assessors to reconstruct the actions of an
intruder. Intrusion detection is frequently performed after the fact, on historical logs.
Attack assessment can require logs that go back even further in time, since sophisticated
attacks often take the form of a sequence of very short intrusions spread out in time.
Therefore, audit logs should be kept for a fairly long time, to make sure that the extent of
an attack can be discovered.

Unfortunately, logging is expensive. Maximal logging can use a high percentage of
processor power. Logs maintained over a long period take up a lot of disk space.
Therefore, audit logging must compete with other functions.

This example could be made more complex by extending it to monitoring events on hosts
that have one or more servers (mail, file, web, etc.), or by increasing the user needs to
include the ability to detect attempts to hide attacks (e.g., by erasing the logs) or to detect
misuse of administrative privilege. But even this simple case should help clarify the role
of the specifications our method requires application vendors to supply.

We consider a networked PC that does not execute any system servers (e.g., file server,
mail server). We are concerned primarily with the system security log, which captures a
record of events that may affect system security. These include the success or failure of:

e logon/logoff

o file and object access

e use of user rights

e user and group management
e security policy changes

e restart and shutdown

. 2
e process tracking”

Based on our familiarity with security applications, we believe that logon/logoff, file and
object access, and process tracking are the most useful for intrusion detection and attack
assessment. We do not require system administrators to know this sort of information.
Vendors or domain experts must do this sort of analysis.

4.2 Application modes

To support attack assessment and intrusion detection, logging must log “adequate”
information and also maintain the integrity of the logs (e.g., by detecting and debugging
log damage). To be adequate, the information must at a minimum allow
detection/assessment of the “usual” attacks, including reconnaissance attacks, and must
be maintained long enough to detect/assess attacks spread out over time (one year, say.)
A reasonable discipline for maintaining the integrity of the logs might include the
requirements: back up logs, wrap log files that overflow, do not overwrite information
that is not backed up.

A vendor (or domain expert) might therefore describe the logging needs of a fully
functional attack assessment or intrusion detection application as follows:

1) Audit major security events

2
“ Process tracking means logging an event whenever a new process is created. It provides process
IDs, which are needed to associate logoff and file accesses with a given user.

19

a) Audit login/logoff
b) Process tracking
¢) Audit access to local files and objects
2) Maintain audit trail for one trailing year
a) Create log file big enough to hold one month of audit data
b) Archive log file monthly to file server
3) Back up audit data to guard against log file failure
a) Back up local log file frequently
b) Overwrite backed-up log entries if file is full
c) Do not overwrite entries that have not been backed up

We will specify the resource needs for each mode of operation at this level of granularity.
(Section 4.5 considers a refinement of this picture.) For the purposes of this example,
we supposc that both intrusion detection and attack assessment require complete audit
records. Thus, we don’t define degraded modes of operation compatible with shortfalls
in (2) or (3)—incomplete records mean the tools won’t operate at all.

We define two modes for attack assessment: Fully functional, Login-only. Login-only
mode is possible if (1c) is unavailable. It provides a minimal capability: the ability to
detect unusual logins by insiders or simply to observe who was logged in when some bad
thing happened. Under our assumptions, intrusion detection has only one mode, since
knowledge of logins alone would not be useful.

4.3 Configuration parameters

The following configuration parameters are relevant to the needs of attack assessment
and intrusion detection: the frequency with which the log file is archived, the frequency
with which the log file is backed up, the size of the system log file, the size of the local
log file (on the PC), the event filtering (determining which of the seven kinds of auditable
events should be recorded), and the policy for log wrapping (discussed below).

Since system logging can consume so much disk space, NT requires the administrator to
set a maximum size for the log file. Microsoft provides three choices for event log
wrapping when the log file is full:?

1) Overwrite events as needed

2) Overwrite events older than N days if log file is full (fill in a value for N), then
drop any further new events

3) Do not overwrite events (drop new events)

When the log file is full: choice (1) tells the system to overwrite events starting at the
beginning of the file; choice (2) says that the log should wrap up to the point at which
events within the last N days would be overwritten—after which, logging will stop; and
choice (3) says that, at this point, event fogging should stop.

* None of the choices includes notifying anybody that the log file is full.

20

4.4 Relating configuration parameters to applications

We next define the relations between configuration parameters and the modes of the
applications—Dby relating the parameters to the requirements for each mode.

In fully functional mode (for either attack assessment or intrusion detection) the filter
determining which events to log must capture at least logon/logoff, process tracking, and
file and object accesses. In login-only mode the filter must capture at least logon/logoff
and process tracking.

The setting of that filter determines how much space will be needed to store N days worth
of auditing. Only experience can tell us how to calculate that* as function, S(N), of N.
The size of the system log file must be at least S(31) and this file must be archived at
least once a month. An acceptable size for the local log file depends on how frequently it
is backed up. If it is backed up every N days, its size must be at least S(N); and we set

the overwrite policy to option (1). (Here, “must” means “for these tools to operate at
all.”)

Thus we can determine the available modes as a function of the filter setting, the sizes of
the logs, and the frequency of backups and archiving.

4.5 A refinement: Reporting

A more refined specification of the applications is necessary if we want to be able to
report configuration errors to the cyber commander without also supplying low-level
details. The refinement given below distinguishes between the logon/logoff information
and the file event information, so that we can explicitly point to the requirements violated
if, for example, we stop recording file access events for one hour.

1) Audit major security events

a)Log logon/logoff information
i)Record logon/logoff success and failure events
1i)Record process tracking events
b)Log file and object access information
i)Record file and object access success and failure events
il)Record process tracking events
2) Maintain audit logs for one trailing year

a)For each log file, maximum log file size shall be big enough to hold all audit
entries during the archive period.
1)Security log file
ii)Access information log file
ii)Process tracking log file
b)For each log file, archive the log file periodically to a file server

4
Of course, the amount of audit space required increases as the computer is used more
heavily—for example, during a major crisis.

21

3) Back up audit data in case of log file failure

a)For each log file, back up local log file frequently.

b)For each log file, overwrite backed-up log data with new entries if log file is
full.

c)For each log file, never overwrite audit entries that have not been backed up

This set of requirements does not prejudge implementation details such as whether the
logon events are kept in the same file as file access events. It also partitions the
information so that we can explicitly point to the requirements violated if, for example,
we stop recording file access events for one hour.

4.6 Discussion

4.6.1 Better description of applications

Our example describes the applications quite simplistically. Descriptions could be
improved both by defining more informative modes of operation and by stating more
detailed requirements.

More informative modes. We partitioned modes discretely: the application does or does
not do certain things. However, an application occasionally unable to deliver the desired
performance characteristics for short periods of time is quite different from one
permanently in a degraded state. There might be some way to define the modes so as to
deal with lacunae in both the log and resource constraints. An appropriate
characterization of application needs might be sufficient to avoid a detailed analysis.

More detailed requirements. We stated an application’s requirements as questions with
yes/no answers. It would be desirable to introduce the notions of tolerance and
approximation into the requirements so that assessments are not unnecessarily pessimistic
(forcing into some degraded modes. Note, however, that margins of error may depend
on circumstances. For example, keeping an audit log on the file server may normally
impose an M% performance penalty on the processor, but if the usual file server has been
replaced by a slower substitute or the network is very heavily loaded, the performance hit
can be much greater. To handle this well will probably require some system-specific
support tool. However, if an application is described with sufficiently fine-grained
modes, an approximate solution may be quite satisfactory.

4.6.2 Aggregation

Our descriptions of the applications omitted processing power from the requirements and
performance estimates from the definitions of the modes. The actual performance of an
application depends on the scheduling of all tasks, whose demands do not add up in any
simple linear way. For example, processor scheduling tends to fall apart when total
utilization is higher than 70%. Demands for storage are similarly non-linear, though the
impact of a high shared load will manifest itself differently. The determination of “disk
space needs” is more complex then simply adding up disk space demands. One could
measure how a particular application actually interacts with audit logging when they are
set at given modes. Doing this in advance, or by simulation, avoids the intractable

22

problem of figuring out analytically how the performance of the two (application and
logging) interacts.

We have considered introducing a notion of an aggregated resource, such as total disk-
space. Doing so would be complex. It means one thing if all storage is (transparently)
distributed and another if, for example, an audit log is required to reside on the disk of the
PC whose actions are being logged. Once again, a system-specific function may be
needed to relate application resource needs with the collection of resources available.

4.6.3 User needs

We have given a simple example of assessing system configurations in terms of the
application modes they support. Real user needs lie at a higher level. After a cyber
attack, is it better to have intrusion detection in normal mode and other functionality in a
somewhat degraded mode, or vice-versa? By providing some intermediate
representation—the application modes—we hope to simplify this analysis process.
Whether to tolerate degraded auditing requires insight into mission needs and the nature
of the attack.

5. Example: A Secure Distributed CORBA Application

This example studies reconfiguration of a distributed CORBA application running on a
system with degrading resources. We conclude that fallback positions must be developed
in advance, because the CORBA Security policies are too complex for a system
administrator to modify at runtime. Without the ability to debug and test a new policy
configuration, an administrator would find it difficult to guarantee that the whole system
would continue to function. We conclude by describing how a range of fallbacks could be
developed and presented to the user. Section 5.1 provides an overview of CORBA,
section 5.2 provides an overview of the CORBA Security Service and accompanying
policies. Section 5.3 describes the distributed application scenario. Section 5.4 describes
the kind of support that the developer of the distributed application (not the CORBA
ORB or Security Service vendor) could provide to the system administrator.

Sections 5.5 and 5.6 provide a high level description of the system administrator’s
decision process and then, within the context of the scenario from Section 5.3, describe
potential fallback positions. In Section 5.7, we discuss what kinds of help could be
automated and point out places where automation would be difficult.

5.1 CORBA overview

The Common Object Request Broker Architecture (CORBA), introduced in 1992 by the
Object Management Group (OMG), has gained widespread acceptance as a distributed
object computing infrastructure. CORBA is a conceptual “software bus” that supports an
environment of plug-and-play software components. Applications communicate with
each other regardless of the platform they are running on, the language in which they are
written, and their location. The Object Request Broker (ORB) is the fundamental
CORBA mechanism used to provide the communication channels.

5.2 CORBA Security Service overview

The CORBA Security (CORBASec) specification addresses the security requirements of
the CORBA distributed object environment [10]. In general, CORBASec describes the
security association between a CORBA client and a CORBA server. It addresses all areas
of security, including identification and authentication, authorization and access control,
security of communication, security auditing, and the administration of security
information. Figure 5-1 below depicts the basic high-level CORBA security model.

[— e e e e i o

! . -
'Target application
;security control

- Client application ;
 security control

rcqucsll I request T l
repl
reply repy

/ ORB

/

Clicnt side Target side
sccurity controls security controls

Client Target

Figure 5-1: Basic CORBASec model

Each object resides in one or more Security Policy Domains. Every domain has an
Invocation Access Policy that defines the privileges each principal has when attempting
to access objects in that domain. These privileges are called the effective rights of the
principal. A principal may have different effective rights in different Security Policy
Domains.

Every interface associates required rights with each of its methods, specified either as
“All S” or “Any S,” where S is a list of rights. “All S” means that access is allowed only
to those principals whose effective rights include every right listed in S. “Any S” means
that access is allowed only to those principals whose effective rights include at least one
of the rights listed in S. These access rules apply to every object that is an instance of the
interface regardless of the domain in which the object resides. CORBASec has defined a
small set of standard rights, called the CORBA family of rights. These are {g (get), s
(set), m (manage), and u (use)}.

When a Client invokes a Target, the ORB determines whether to permit the invocation,
thus providing control over accesses to “security-unaware” objects without requiring any
changes to the interfaces or implementations of those objects. (An object is security-
unaware if it provides no security functionality of its own.) These access decisions, made

24

on the Target side of the invocation, are based on three things: received credentials,
required rights, and effective rights.

On the Client side, an authentication mechanism (e.g., SPKM, Kerberos, CSIECMA,
SESAME) establishes the identity of a principal (human or entity). These are
incorporated into the credentials passed to the Target side ORB.

The Target side makes the access decision straightforwardly: by consulting the Target
domain’s Invocation Access Policy, the ORB determines the effective rights of the
principal whose credentials it has received. Access is granted if and only if the effective
rights of the principal satisfy the required rights. It should be noted that membership in a
particular Security Policy Domain also provides automatic enforcement of other policies
including: Audit Policies that control which operations on which objects are to be
audited; Delegation Policies that specify which delegation model will be allowed for
delegation of privileges in a multi-tier client/server environment; and Invocation Policies
that specify quality of protection (encryption mechanisms, etc.) requirements.

CORBASec 1.2 specifies standard features for a security service. These features are
structured into several packages. The main security functionality is provided by two of
them:
e Level 1: provides a first level of security for applications that are security-
unaware and for applications with limited needs to enforce their own security by
access controls and auditing.

e Level 2: provides more security facilities, and allows applications to control the
security provided at object invocation. It also provides facilities for applications
to administer security policy.

To use either Level | or Level 2 security packages, the system administrator creates the
users and groups, sets required rights on CORBA interfaces and methods, and creates
security domains and associated policies.

5.2.1 Policy types

A security domain supports five types of policies:

e Invocation Access Policy. This policy specifies the effective rights for users or
groups with respect to objects in a particular domain.

e Delegation Policy. This policy specifies the kind of delegation used by objects in
the security domain. There are three types of delegation: none, simple, and
composite. No delegation means that the target receives only the credentials of the
immediate caller. Simple delegation means that the target receives only the
credentials of the original caller. Composite delegation means that the target
receives the credentials of all parties in the call chain.

e Client Secure Invocation Policy. This policy specifies which security features are
supported or required for outgoing calls on the specified interfaces. These security
features include confidentiality and the type of delegation (none, simple,
composite).

25

e Turget Secure Invocation Policy. This policy specifies which security features are
supported or required for incoming calls on the specified interfaces. Security
features include confidentiality, and type of delegation (none, simple, composite).

e Audit Policy. This policy specifies events to be audited at a specified interface.

5.2.2 Access control example

We illustrate how access control works by a simple example. Consider the following
CORBA interfaces for a bank:

Interface Bank {
attribute string name;
attribute AccountList accounts;

account createAccount (in string name, in string password);
float totalAssets();
}

Interface Account ({
attribute string name;

void changePassword(in string oldPassword, in string newPassword) ;
float deposit(in float amount);
float withdraw (in float amount);
float balancel():;
}

We set the required rights for these methods as follows:

Interface/Method Required Right
Bank::createAccount Any corba:g
Bank::totalAssets Any corba:m
Account::changePassword Any corba:m
Account::deposit Any corba:m
Account::withdraw Any corba:m
Account::balance Any corba:g

There are four users:
e BankExecutive

o Teller
e Jane
¢ Bob

Figure 5-2 shows three security domains and the operations that each user should be able
to perform on the objects. The BankExecutive should be able to get information about the
bank’s total assets, but he should not be able to create an account. The teller should be
able to create accounts at the bank and perform operations on the accounts. Janc and Bob
must go through the teller to deposit and withdraw funds or to change their password.
Users may get information about their own account balance.

26

BankExecutive

total Asscts CommunityBank

Bob

bhalance

createAccount

Teller i changePassword

deposit
\ withdraw

halance

BobDomain

Jane

balance JaneDomain

Figure 5-2: Security domains and objects for the bank example

Here are the Invocation Access Policies specifying the rights for each user in each
Security Domain:

CommunityBank BankExecutive: corba:m

Teller: corba:g
JaneDomain Teller: corba:m

Jane: corba:g
BobDomain Teller: corba:m

Bob: corba:g

The Teller has the corba:g right in the CommunityBank domain, so he has sufficient
rights to perform the create Account method on the Bank object. The Teller has
insufficient rights to get information about the total assets of the bank. The
BankExecutive has the corba:m right in the CommunityBank domain, so he does have
sufficient rights to get information about total bank assets. The BankExecutive does not
have sufficient rights to create an account.

Jane has the corba:g right in the JaneDomain, so she has sufficient rights to get access to
her account balance. She does not have any rights in the BobDomain, so she is not
allowed to get information about Bob’s account.

5.3 Secure distributed CORBA application

Consider a complex CORBA-based distributed application having multiple servers on
multiple hosts. Legacy applications, including databases, are integrated by using CORBA
wrappers. Client applications are available from a number of geographically dispersed
locations. See Figure 5-3 for an overview of the system. Each box in the diagram
represents a different host; and all hosts are connected to a network.

Secure
Database Database
Server Server
Wrapped
CORBA (Legffy)
SECURITY Secure
SERVICE Application 2
Wrapper
Application | o
Server Secure Application 2
) Application | Server
Client Wrapper
/<> CORBA Client
| I
Client] .)
Client Client Client

Figure 5-3: Example secure distributed CORBA-based system

One CORBA Security Service provides authentication, access control, message
protection and auditing for all systems. The “security configuration parameters” for
using the CORBA Security Service are the definitions of groups, domains, policies, and
required rights.

In this example, we assume that the CORBA Security Service parameters, in the form of
policies, can be set to guarantee appropriate access and message protection. Figure 5-4
illustrates that during normal operations, clients must go through the Secure Application
Wrappers and may not call the legacy Application Servers directly.

28

Secure
Client »| Application X >
\)(Uation X

Figure 5-4: Under the auspices of the CORBA Security Service, a client
cannot call an application server directly

Several system administrators cooperate to provide system support. If the system were
being attacked, the system administrators would have to consider a multitude of fallback
positions and associated tradeoffs.

5.4 Support for the system administrator

The system administrator has ways to monitor the system’s performance. During or after
a cyber attack, the system administrator needs to be able to cope with changing system
characteristics. We suggest that the developer of the application could offer some
assistance to the system administrator.

The developer could prepare a set of operating modes for the distributed application. For
the secure distributed CORBA example, we can imagine four modes that would support
different levels of security, such as shown in Figure 5-5, and allow the system
administrator to select the appropriate level of security.

[Enhanced Security]
. . CORBA Security CORBA Security
{Basnc Securlty][SSL J [Service, Level 1 } [Service, Level 2]

Figure 5-5: Possible levels of security for the distributed application

The levels are:

Busic Security: Applications run on a plain CORBA ORB. Neither the CORBA Security
Service nor the CORBA SSL enabled ORB are running in this mode. Users and groups
may be given launch and invoke privileges for server and client applications.

SSL: The Secure Sockets Layer ORB (CORBA SSL) is enabled, providing encryption.
CORBA SSL is a much lighter weight service than the CORBA Security Service. We
will not run the CORBA Security Service and the CORBA SSL ORB at the same time.

CORBA Security Service:

29

Level I: Provides confidentiality, integrity, and accountability for security
unaware applications. Security unaware applications can also run in insecure
mode on a plain CORBA ORB.

Level 2: Provides confidentiality, integrity, and accountability for security aware
applications. “Security aware” application code handles some of its own security
and depends upon the CORBA Security Service. For a security aware application
to be able to function at any of the other levels, there would have to be the
equivalent of a system environment variable that would act as a flag to the
application to turn off the security related code.

The Basic Security setting, requiring only a plain ORB, requires a modicum of system
resources. At the other extreme, the CORBA Security Service is very resource intensive.
Because so many objects are needed to support the various security policies, a lot of
processing activity goes on behind the scenes. Some of this processing depends on how
the policies are set up, but even in simple cases, running the CORBA Security Service
imposes a noticeable performance penalty.

In addition to developing different levels of security support, an application developer or
security administrator can develop multiple fallback positions for each mode. We provide
examples of fallback positions in Section 5.6.

With support from the application developer, the system administrator has two important
pieces of information: the level of processing that the system can support, and options for
running the application in different modes/fallback positions. The system administrator
needs a way to map what the system can support to a particular fallback position. It is this
mapping that a requirements management tool could provide.

5.5 The System Administrator’s Decision Process

During a cyber attack, the system administrator should be prepared to handle different
levels of system degradation. Figure 5-6 starts with an undamaged system at the bottom.
With increasingly severe attacks, system resources gradually become unavailable so that,
at the top of the illustration, it may not be possible to guarantee a high degree of security,
especially at a fine granularity.

30

Enhanced

Decision Point 3

Security
Guarantee Guarantee Guarantee
. . P CORBA
Confidentiality Integrity Accountability ORB
CORBA CORBA CORBA
Security SSL Security Security Decision Point 2
Service Service Scrvice

5

Figure 5-6: System administrator decision points

=
S
&
o
=}
o
L
o0
L
[
E
o
b
@
3
79]
&0
=~
o
wn
@
]
o
12
£
o]

Decision Point 1. If a stable system is neither under attack nor failing, all of the system
resources are available to fully support the distributed application. The system
administrator has the option of providing security via the CORBA Security Service. The
result of Decision Point 1 is to determine the initial configure the CORBA Security
Service. The system administrator must choose a cohesive set of policies. It is not
possible, for example, to configure the security service with one set of policies to
guarantee integrity and a different set of policies to guarantee confidentiality. For a high-
level description of the CORBA Security Service and the different types of policies, see
Section 5.2. The main difficulty involved in developing a set of policies is that the
policies are interdependent, so that a change in one policy often requires a change in
others. It is very easy to define mistaken policies, causing the CORBA Security Service
to deny applications access to functions they require.

This complexity makes it risky to change settings on the fly. We envision that an
application vendor or security administrator could develop sets of policies that would
correspond to different fallback positions. The requirements management tool would
describe the pros and cons of the various fallback positions so that the system
administrator would be able to make a good decision.

Decision Point 2. Imagine that the system is under attack and system resources are
degrading. The system administrator has the option of using the CORBA Security
Service, but perhaps with coarser grained policies, or using CORBA SSL, which only
provides confidentiality. CORBA SSL is a much lighter weight solution than the CORBA
Security Service. A damaged system might not have enough resources to run with the full
overhead imposed by a CORBA Security Service. A useful decision aid would help the
system administrator realize the impact of choosing CORBA SSL.

Decision Point 3. 1f the system is severely damaged, the system administrator must

decide whether to run the application with minimal security guarantees. A useful
decision aid would help the administrator understand the tradeoffs. Perhaps some

31

functionality is critical and a limited subset of applications could be run with minimal
security. A vendor or security administrator could develop a fallback position to identify
those servers and clients that could be launched in a less secure mode.

5.6 Example fallback positions

We elaborate the rather generic distributed application described in Section 5.2, and
define various fallback positions for each of the security modes. We first describe the
organization of users and groups. This is controlled by needs of the various groups, and
not something that a system administrator can do much about when responding to a
degrading system. Because of the number of users involved and the difficulties associated
with key distribution, configuration of users and groups should be a fairly stable aspect of
the CORBA Security Service configuration.

In our example scenario, there are 2000 users, “userl” — “user2000”. We associate the
users with the groups illustrated in Figure 5-7:

STAFF

ADMIN

Figure 5-7: Groups of users of the sample distributed application

Users are assigned to the groups as follows:

STAFF: “user!” — “user2000”

A: “user1000” — “user2000”

B: “user500” — “user1500”

C: “user1000” — “user1500”
ADMINISTRATOR: “userl” — “user50”

Users assigned to group C are also assigned to group A and group B. Some users in the
STAFF group belong to no other group. The groups A, B, and C represent teams of
people working on different projects.

In addition, we create a special user, “SERVER_ADMIN”. This is not a human user, but
an entity that owns server processes. The SERVER_ADMIN user is not assigned to a
group. We can give the SERVER_ADMIN user different privileges from those of any

32

group. In reality, a system administrator would run the processes as the
SERVER_ADMIN user. However, if we put the SERVER_ADMIN user into the
ADMIN group, the processes could run with too many privileges.

5.6.1 CORBA Security Service Level 2

An environment variable, LEVEL_TWO, indicates whether the system is running in
mode CORBA Security Service Level 2. This mode is meaningful only if both clients
and servers are security aware. The client code calls the CORBA Security Service to
conduct authentication. Server code calls the CORBA Security Service to implement
composite delegation. At runtime, client and servers check LEVEL_TWO to determine
whether their security code should be executed.

We describe two security policy configurations. The first is the ideal configuration for the
fully functioning system. The second represents a fallback position that uses less system
resources by supporting fewer security domains.

Ideal configuration. In order to get fine granularity of access control, the ideal
configuration includes multiple security domains. We can support separation of activity
and different levels of access based on “need to know.”

C_Servers
Domain

A_Servers
Domain

Staff_Servers
Domain

B_Servers
Domain

ADMIN

user

Admin_Servers

Domain

Figure 5-8: Ideal mapping of groups and users to security domains

33

We define six domains: Five of them (called Staff_Servers, Admin_Servers, A_Servers,
etc.) correspond to the groups of users we have defined. Servers run in these domains.
The sixth, not shown in the figure, is called Client_Apps, and supports policies for
running client applications. We want all members of the Staff to have access to the
servers in Staff_Servers; all and only members of group A have access to the servers in
domain A_Servers; etc. We could accomplish this formally by setting the Invocation
Access Policy of A_Servers (for example) to assign effective right “g” to all and only the
member of group A and by setting the required rights for each method on a server to be
“All g.”

In the ideal configuration, composite delegation could work as follows. Suppose we do
not want a client of an A user to call some application X directly. The A Client must first
call the Secure Application X Wrapper that is running in the Staff_Servers domain. We
specify that the A Client and the Secure Application X Wrapper allow composite
delegation. Then Application X code checks the credentials list to make sure that the
SERVER_ADMIN credentials are present before completing any request.

Client_Apps Domain Sécur‘e
A » Application X » Application X
Client Wrapper \

Staff Servers Domain

A_Servers: Domain

Started by user2000 Started by SERVER_ADMIN

Figure 5-9: Composite delegation

Fallback position. The fallback position in the Security Service Level 2 mode is to
support fewer security domains, as pictured in Figure 5-10: Staff_Servers,
Admin_Servers, ABC_Servers, and Client_apps. The result is less fine-grained access
control. There is no difference between the access permissions of users in the A, B, and
C groups. Users belonging only to the STAFF group have no access to applications
running in the ABC_Servers security domain.

34

ADMIN

Admin_Servers

ABC_Servers

Domain Domain

Figure 5-10: Fallback position, supporting fewer security domains

5.6.2 CORBA Security Service Level 1

The LEVEL_TWO environment variable is not set in the CORBA Security Service Level
1 mode. Clients and servers behave as if they are security unaware—they make no calls
on the CORBA Security Service. Since composite delegation depends on the ability to
run security aware code, composite delegation is not possible in Level 1.

Without composite delegation, we are forced to use a different access control model.
Figure 5-11 shows that we can achieve some separation of access to an application X by
running three application X Servers, each in a different security domain. But the way in
which these Application X Server are launched differs from the way they were launched
in the previous Level 2 example. Imagine that an Application X Server has access to a
database for its persistent data store. The information in the database is partitioned so that
the Application X Server in the A_Servers security domain may not access the same
information as the Application X Server in the B_Servers security domain. This shows
that moving from one fallback position to another may not be a minor step. The details
must be worked out in advance because we must change not only the security domain
policies, but also the way that the applications are launched.

35

A_Servers Domain

Application

Started by
X SERVER_ADMIN
Client_Apps Domain
Server

A

Started by user2000 .
Client

Application
X
Server

Started by user1000)
Client

C_Servers Domai

B —
Started by user500 : Application
Client X
Server Started by

SERVER_ADMIN
B_Servers Domain

Figure 5-11: Level 1 access model

We can define two fallback positions, analogous to the two fallbacks for Level 1, by
defining different numbers of security domains. Switching to one of these fallbacks from
Level 2 would require the system administrator to kill some of the processes and launch
new processes.

5.6.3 CORBA SSL

If a loss of resources makes it impossible to use the CORBA Security Service, the
remaining resources might still be able to support CORBA SSL. CORBA SSL uses
encryption for point-to-point message protection; it does not support fine granularity of
access control.

Some of the applications designed for the ideal configuration cannot be run in CORBA
SSL mode. Figure 5-12 illustrates the constellation of servers and clients that run with
CORBA SSL.

36

Database
Server

Application 1
Server Application 2
Server
Client \ \
> CORBA SSL Client
\ I
; Client
Client Chent
Client

Figure 5-12: Constellation of applications in the CORBA SSL mode.

CORBA SSL runs together with the plain CORBA ORB and offers some facility for
access control. The system administrator can specify privileges for users and groups to
launch CORBA objects and and/or invoke CORBA methods.

5.6.4 Basic security

System resources may be so degraded that it is not possible to run either the CORBA
Security Service or CORBA SSL. This means that no integrity protection (encryption) or
fine-grained access control is available.

The fallback position, shown in Figure 5-13, is to run the plain CORBA ORB with only a
limited subset of servers and clients. The gray area in the diagram depicts a group of
users in a physically secure location. We set invoke and launch privileges to prevent
some groups of users from running clients.

Secure
abase Database
SNer Server
(Wrap
Legacy)
D
Appli®™®
Wrappe
Application 1
Server Rgure
ApplidNjon 1
Client \ \ Wrapp
Physically secure CORBA Chngt
I
t Cingt
Client

Client

Figure 5-13: Servers and clients that can be launched in the Basic Security Mode

5.7 Automation

A requirements management tool could help by providing:
e away to match a set of system resources to the demands of a fallback position

e ways to make tradeoffs between various fallback positions.

Which aspects of the problem could be automated? We assume that it is relatively
straightforward for a system administrator to assess system capability—to figure out the
current demands on the system and the number and kinds of additional processes that the
system can support. Automated support for assessment is available: network and system

monitoring tools are good examples.

It is not easy for the developer of a secure distributed CORBA application to define
fallback positions that are “generic.” A sensible configuration will depend on the specific
needs of users and groups, the level of protection the information requires, and the
number of options the application developer has built into the application. An application
developer must work with a security administrator to figure out which fallback positions
are acceptable. The fallback positions and tradeoffs must be determined by hand—this

part of the process is not automatic.

Once the system administrator has chosen a fallback position, there remains the problem
of how to make the change of mode. Some mechanism would have to be in place to
shutdown current processes gracefully and start them up in a new mode. This would

require some central console for the network and some way to control processes on
remote hosts. Communication between hosts would have to be secured so that new
vulnerabilities were not introduced. This procedure could be automated, but any change
of mode could present problems for 24/7 services.

6. Formalism

Our goal in this section is to present a preliminary formalism for describing the relations
between resource constraints and capabilities, with the goal ultimately of integrating
these descriptions within general modeling frameworks such as UML or CORE.

Section 6.1 introduces some basic vocabulary; Section 6.2 can be regarded both as an

introduction to the grammar and as a brief discussion of how to build a model from this
vocabulary; and Section 6.3 contains a YACC grammar for writing system descriptions
in that vocabulary. Finally in Section 6.4 we briefly describe potential analysis support.

6.1 Vocabulary

For any system S we define sets of requirements, phrased in terms of assets. Assets
encompass capabilities, features, behaviors, etc. Some assets are discrete (e.g., VO
ports); others are continuous (e.g., bandwidth); still others are discrete but better modeled
as continuous (e.g., memory). A principal concern of this section is allocation of assets
among applications.

Sets of requirements are grouped into a family: at any given time, only one set in the
family is active, though the active set may change. For example, in response to an
external attack, we may degrade our active requirement set to some achievable fallback
position. '

The assets of S depend on how it is configured—that is, on the values of certain
configuration parameters. We use the assets to satisfy the active requirement set for S—
either directly or indirectly, by supporting applications that provide additional assets by
running on S. The assets available from the configuration S are configured assets, and
those provided by applications running on S are generated assets. Assets provided by the
external environment, which exist independently of S, are external assets.

Each application runs in one or more modes, and both consumes and provides assets.

The input requirement set of an application running in a given mode is a set of statements
describing the assets required for running in that mode, together the with relationships
among the system, generated, and external assets required for the accomplishment of the
application. The output requirement set of an application in a given mode is a set of
statements describing the assets that it provides, together with the relationships among
assets that it brings about.

The complete collection of applications running or proposed to run on the system S is a

troupe. Not every troupe can actually run on S: there may be insufficient assets; some of
the applications may be incompatible with others. A scenario is a snapshot of

39

applications in progress, their modes, the assets allocated to them, and the underlying
configuration of the system. (Note: this is not the same as a UML scenario.)

6.2 Modeling

The next section presents a YACC grammar for system descriptions expressed in the
vocabulary of section 6.1. Here is the motivation for, and an overview of, that grammar.

6.2.1 Systems

A SystemDeclaration states the name of the system, its class (which defines all
possible configurations and states of the system), and the system’s current instance
system (representing the current condition of the system). The system designers and
integrators define the SystemClass. A system administrator will describe the
SystemInstance. Interplay between the possible conditions and the actual condition
will support inference of ways to improve the condition of the system.

The system condition has four major constituents: configuration, assets, requirements,
and applications. All of them are subject to modification in responding to a cyber attack.

6.2.2 Configuration

Configuration consists of in organizing a system, both physically and logically.
Connecting processors by cables, installing a firewall host in a selected position, issuing
commands during boot-up so as to mount file systems, and choosing security policies to
enforce are all part of configuration. No matter what manner of configuration is being
represented, the common representation is by the value of a configuration parameter.
Configuration parameter values may be numeric, both integer- and real-valued, or
enumerated identifiers. For example,

EventLogging = On
LogCapacity = 5 Gigabytes

The full range of values for configuration parameters appears in the SystemClass section.
The particular values in force appear in the SystemInstance section.

Security parameters are configuration parameters. The policies that could be in effect
and the particular policy that is in effect are all given by means of configuration
parameters and their values. Because security is special, we make a distinction between
Functional and Security in the ParameterKind child of a
ParameterDeclaration production.

The values of configuration parameters determine and constrain the assets available to the
system.
6.2.3 Assets

An AssetDeclaration describes a useful entity that may be generated and/or
consumed with the system. Assets are quantifiable, originate in several ways, are of

40

several kinds, and have various associated rights, constraints, and requirements. Assets
exist at one of two levels of abstraction: administrative-level and user-level.

6.2.3.1 Asset quantities

Each asset is a finite entity. There is always a number expressing how much of the asset
is available. For example, 10 Megabytes of RAM is an asset, as is 3.5 months mean time
to failure for the system. A capability such as the ability to read email is also an asset: it
is assigned the quantity | if it is available; Oif it is not.

6.2.3.2 Asset origins

Assets can originate externally, may be configured with the system, or may be generated
by an application running on the system. External assets are such things as electrical
power, network connections to the outside world, a time-of-day service, etc.
Configurable assets are such things as disk storage, Ethernet bandwidth, firewalls, etc.
Generated assets are such things as databases (which require running applications to be
useful), mail-reading capability, and software fault-tolerance.

We support three asset kinds: resources, capabilities, and features. A resource is a
component of the system that holds part of the system state.

6.2.3.3 Asset rights

Applications have the rights to use assets different ways. Shared assets are freely usable.
Multiple uses of shared assets do not interfere with one another.

Exclusive assets are usable by one application at a time. An application using an
exclusive asset has access to all of the asset.

Divisible assets can be apportioned among the players, each having exclusive rights for
the portion. Once the full quantity of a divisible asset has been apportioned to
applications, no other applications may use the asset until some portion of it is freed.

6.2.3.4 Asset constraints

The quantity available for an asset may be a given, as in the case of external assets, but it
may be under the system administrator’s control, as in the case of configured and
generated assets.

The values of configured assets depend on combination of settings of configuration
parameters. Each combination is sufficient to bring about the stated value; it is necessary
for at least one combination to hold for that value to obtain. The
ParameterSettingsDisjuncts production unfolds to describe all the
combinations. The ParameterSetting production describes a particular
combination.

The values of generated assets are described with the applications that generate them, in
the OUTPUT requirements of the applications.

41

6.2.3.5 Assets and requirements

Assets figure fundamentally in the requirements placed on the system and on its
applications. These requirements are stated in terms of the values of assets, their
availabilities and interrelationships. See below under Requirements and Applications
for more information.

6.2.3.6 Asset abstraction levels

At the administrative level, a system is viewed very concretely. Its components are such
things as cables, processors, firewalls, parameter settings, and—providing the bridge to
the user level—applications. The user-level view of the system encompasses such things
as databases, word processor documents, mail readers, and of course, the applications
providing them that rest upon the administrative world. The requirements placed on
applications state the relationships between assets at the two levels of abstraction.

6.2.4 Requirements

RequirementSets are basic to the system. Each member RequirementSet is a
specification of input and output conditions that could govern the system. The point of
our requirements management activity is to find, after a cyber attack, the “best” set of
requirements that it could satisfy, possibly after reconfiguration, reallocation of assets,
and change of applications.

Some requirement sets apply to the entire system, and are attached through the
RequirementSets child to the SystemClass production. Other requirements
apply only to applications, and are attached through the UserRequirements and
AdminRequirements children to the Application and Mode productions.

The requirements applying to the entire system concern the decision maker. The
application requirements are used by the administrator to fit together scenarios that will
satisfy or at least inform the decision maker.

Requirements are phrased in terms of the values of assets. Demands are made for certain
combinations of quantities of assets (required asset conditions); assurances are made that
certain other combinations of quantities of other assets will be available (provided asset
conditions). Relationships among values are asserted, both in required and provided
conditions. If there is more than one way to bring about a desired effect, disjoined
requirement sets are used.

6.2.5 Applications

Applications represent programs running on the system. They typically both require and
generate assets. Their administrative-level requirements are specified separately from
their user-level requirements; however, the user-level requirements may mention the
administrative-level assets, if desired, so as to bridge the abstraction levels.

The requirements attached to the Application production are common to and
distributed over all the modes of the production (except NULL, described below). The

requirements attached to a Mode production are conjoined with the common
requirements for the application when it is running in the mode in question.

The special mode NULL represents a non-running activity. It has no requirements,
neither consuming nor generating assets. The activity’s common requirements are not
distributed to the NULL mode.

Abstractly, applications could also represent human activities concerning the system, or
hybrid human/machine interactions.

6.2.6 Integration

System integration is made more difficult by the fact that allocation of assets is often
nonlinear. For example, the additional processing demands that result from launching a
new application will depend on what applications are already running—since the new
application not only consumes resources for its own needs, but also adds overhead costs.
In practice, it seems likely that this sort of nonlinear aggregation can be represented only
by rough, and conservative, approximations. Our grammar contains a placeholder that
represents the following model of aggregation: divide the space of configurations into
regions (a relevant parameter might be the number of applications running concurrently
or the total utilization of the processor) and approximate aggregation on that region by
some empirically determined linear function.

6.3 A grammar

/* Tokens whose names are in all upper case are for keywords. */

$token
A
ADMIN
AFFECTS
AND
APPLICATION
APPLICATIONS
APPROXIMATION

ASSET
ASSETS
CAPABILITY
CONFIGURATION
CONFIGURED
CONTAIN
CONTAINS
DIVISIBLE
DOES
ENVIRONMENT
EXCLUSIVE
EXTERNAL
FEATURE
FUNCTIONAL
GENERAL
GENERATED
HAS

43

IN

INPUT
INSTANCE
INTEGRATION
INTERCEPT

INTERSECT
INTERSECTS
Is

MODE

NOT

NULL

OF

OR

OuUTPUT
PARAMETER
PROVIDES
REQUIRE
REQUIREMENTS
REQUIRES
RESOURCE
RUNNING
SECURITY
SHARED
SLOPE

SUBSET
SUPERSET
SYSTEM
USER
VALUE
VALUES
WHEN

/* Tokens with mixed capitalization are for standard lexical elements
*/

%token EnumeratedValue
%token Identifier
%token Number

R
o

/* The root production comes first */
SystemDeclaration:

/* Some preliminary vocabulary

*/

Discretevalue:
Number
| Enumeratedvalue

‘

EnumeratedValues:
EnumeratedValue

44

| Enumeratedvalues "," EnumeratedvValue

.

NumberRange: "[" Number "," Number "]" ;

DiscreteValues:

EnumeratedValues
| NumberRange

’

/*******k**

Systems

**/

/*

*

* % ¥ X

A SystemDeclaration gives both the full potential of the system,
via the SystemClass child, and the current condition (the
combination of configuration and state) of the system, wvia the
SystemInstance child. Any particular condition of the system is
derivable from the SystemClass. The SystemInstance encapsulates
the actual condition for convenience.

*/

SystemDeclaration:
SYSTEM Identifier
GENERAL SystemClass

INSTANCE SystemInstance

7

/* The SystemClass gives the full potential of the system. Any
* particular condition of the system can be derived from it.
*
* First, describe the assets available from the external environment
* (e.g., power supplies, optical cables).
*
* Next, give the configuration parameters for the system (these
* include the security parameters). Their possible values are
* affected by the configuration parameters.
*
* Then describe the assets that are made available and/or constrained
* by the configuration parameters.
*
* Then give the family of possible requirement sets for the system.
* The motivation for having more than one set is to have fallbacks in
* case of system degradation.
*
* Then describe the possible applications for the system that may be
* run to fulfill the requirements.
* */
SystemClass:
ENVIRONMENT EnvironmentDeclarations
CONFIGURATION ConfigurationDeclarations
ASSETS AssetDeclarations

REQUIREMENTS RequirementSets
APPLICATIONS ApplicationDeclarations
INTEGRATION IntegrationRequirements

v

45

/***************************7\—*********~k*****************************

External Environment
*******~k***/

/* Certain assets are available independently of the system. Declare

* them here. For more about assets, see below.
**/

EnvironmentDeclarations:
| EnvironmentDeclarations EnvironmentDeclaration

’

EnvironmentDeclaration:
EXTERNAL Asset

i
/*****~k****k************************~k*****************************‘k**

Configuration of Function and Security
*k**‘k*****‘k*****/

The configuration parameters directly determine the configuration
of the system, and indirectly determine the initial assets that are
available. There is not a 1-1, but a many-to-many, relationship
between parameters and assets.

*/

L A

ConfigurationbDeclarations:
| ConfigurationDeclarations ConfigurationDeclaration

’

/* Every configuration parameter may take on one or more values: all
* possible values are listed in the declaration. Represent both
* hardware and software configuration by parameter settings.
*
* The value that a configuration parameter takes on, perhaps in
* combination with the values of other parameters can affect the
* gvailability of system assets. The exact combinations that provide
* assets will be noted with the assets. In this production, simply
* note which assets can be affected by the parameter.
* */

ConfigurationDeclaration:
ParameterDeclaration
VALUES ":" DiscreteValues
AFFECTS ASSETS AssetNames

.

ParameterDeclaration:
ParameterKind PARAMETER ParameterName

’

ParameterKind:
FUNCTIONAL
| SECURITY

’

ParameterName:

46

Identifier

'

/***

Assets
***/

/* Declare each asset available to the system, whether provided by the
* external environment, configured with the system or generated by an
application.
* */
AssetDeclarations:
| AssetDeclarations AssetDeclaration

’

AssetDeclaration:
AssetOrigin AssetType Asset ValuesRequirements

I

/* An AssetOrigin describes the manner in which the asset becomes
available. It is a matter of static semantics that an EXTERNAL
asset be declared only in an EnvironmentDeclaration.

*/

AssetOrigin:
EXTERNAL
| CONFIGURED
| GENERATED

’

/* It may be useful to model more kinds of assets, but for now, we
* have resources, which have associated quantities (e.g. 100 megs of
RAM) , :
* capabilities (e.g., e-mail) which are either present or absent
(discrete
* value 1 or 0) and features (e.g., mean time between failures). We can
* be pretty abstract about assets, but each one should have a name and
* a discrete value.
**/
AssetType:
RESOURCE
| CAPABILITY
| FEATURE

'

/* Assets are always quantifiable or enumerable.
* */
Asset:
Quantity OF AssetRights AssetName
| DiscreteValue OF AssetName

’

AssetNames:
| AssetNames AssetName

’

/* A flat name space of assets is assumed. An improvement would to be
* to have structured asset names.

47

**/
AssetName:
Identifier

i

AssetRights describe how an asset can be used. A SHARED resourse
may be used by anyone without restriction. An EXCLUSIVE asset may
be used by only one user at a time. A DIVISIBLE asset may be
apportioned to users in chunks over which they have exclusive
rights.

*/

AssetRights:

SHARED

| EXCLUSIVE

| DIVISIBLE

!

* % % % % X

/* Quantifiable assets are expressed as some number of asset units.
* For examples:

100 Megabytes

28800 baud

* %k ok ok % %

*/
Quantity: Number Unit;

Unit: Identifier;

/* System assets are governed by combinations of parameter settings.
Each asset may have several possible associated values, each with
* jits own relationship to parameter settings.
* */
ValuesRequirements:
ValuesRequirement
| ValuesRequirements ValuesRequirement

’

/* Each asset value may be brought about several ways through
parameter settings, each way described in a
ParameterSettingsDisjunct.

*/

ValuesRequirement :

VALUE DiscreteValue REQUIRES ParameterSettingsDisjuncts

’

ParameterSettingsDisjuncts:
| ParameterSettingsDisjuncts OR ParameterSettings

’

/* BEach way to bring about an asset value through parameter settings
is of the form

*
*
* ParameterSettingSet AND ... AND ParameterSettingSet
*
*

Each ParameterSettingSet is in one of the following forms

48

form is a special case of each of the first two, given for
convenience only.

*/

ParameterSettings:

| ParameterSettings AND ParameterSettingSet

*

* p in {vl, ..., vn}
*

* p in [vl, v2]

*

* p = v

*

* The first two forms are governed by DiscreteValues. The third
*

*

*

7

ParameterSettingSet:
ParameterSetting
| ParameterName IS IN DiscreteValues

’

ParameterSetting:
ParametexrName HAS VALUE DiscreteValue

’

/***

Requirements
***/

The idea is to describe all the requirement sets that could be in
effect for the system. There is no claim that any particular
requirement set is in effect. Contrast this with
ApplicationDeclarations, in which there is exactly one requirement
set per mode.

*/

L S I

/* The RequirementSets production is for the family of requirement
* gets. Fach requirement set in the family corresponds to a
RequirementSet production.
*/
RequirementSets:
| RequirementSets RequirementSet

'

/* Each requirement set consists of two lists of statements, one list
describe asset conditions required by the system, the other list
asserting asset conditions provided by the system.

*/

RequirementSet:

REQUIRES AssetConditions
PROVIDES AssetConditions

’

AssetConditions:
AssetCondition
| AssetConditions AssetCondition

I

49

/* At the atomic level, an asset condition is a statement of the
* presence of an asset with a particular gquantity or value, or

* a relationship between different assets.
* */

AssetCondition:
Asset
| Term Comparison Term

’

Comparison:
Il<ll

He—m

[}

|

| "=

| res

| e

| IS IN

| IS NOT IN
| CONTAINS
| DOES NOT CONTAIN

| IS A SUBSET OF

| IS A SUPERSET OF

| INTERSECTS

| DOES NOT INTERSECT

/*

* An asset name can be used in a comparison expression to mean
* the value of the asset. For example: Memory >= 5 MB.

**/

Term:
AssetName
| Quantity
| "{" DiscretevValues "}"

’

/********************************-k******************‘k********‘k***‘k**

Applications

******************~k**/

ApplicationDeclarations:
| ApplicationbDeclarations Application

’

/* The requirements stated with the application itself are distributed
* over all the modes of the application. This way, repetition is
* avoided.
* ’k/
Application:
APPLICATION ApplicationName
UserRequirements
AdminRequirements
Modes;

50

ApplicationName: Identifier;

Modes:

| Modes Mode

7

Mode:

MODE ModeIdentifier UserRequirements AdminRequirements
| MODE NULL

’

ModeName :

NULL
| ModeIdentifier

’

ModeIdentifier:

Identifier

’

UserRequirements:

USER REQUIREMENTS RequirementSet

i

AdminRequirements:

ADMIN REQUIREMENTS RequirementSet

7

/**********%**

Integration

***/

T N S U R T R S . S SN

/*

*

Because of interactions among applications, allocation functions
for resources are nonlinear. For example, application Alpha may
require 25% of the CPU for adequate responsiveness when running by
itself, but three other application that each regquire 25%, Bravo,
Charlie, and Delta, could not run simultaneously with adequate
responsiveness. There can be complex interactions among
configuration parameters, resource values, and application modes
that affect the allocation of a particular resource.

The nonlinearity of allocation is far too complex to model exactly,
but useful approximations can be made by use of linear functions
within small regions. We divide the space of independent variables
into multidimensional rectangular regions and give the linear
approximation function for each region.

*/

Specify all integration modifications here.
*/

IntegrationRequirements:

INTEGRATION IntegrationList

’

IntegrationList:

Integration

51

| IntegrationList Integration

’

/* Separately specify the nonlinearities, asset by asset.
* */
Integration:
ASSET AssetName REQUIRES Approximations

’

/* Approximate the allocation function for the asset region by region.
* */
Approximations:
Approximation
| Approximations Approximation

’

/* Each region for approximation is determined by a list of intervals
of values for the quantities that affect the allocation function.
*/

Approximation:
APPROXIMATION SLOPE Number INTERCEPT Number WHEN ValuesList

’

/* Specifiy the edges of the n-dimensional region of values.
* */
ValuesList:
Values
| valuesList AND Values

’

/* Values can be for configuration parameters, assets, or applications.
* */
Values:
ParameterSettingSet
| AssetValues
| ApplicationValues

’

AssetValues:
ASSET AssetName IS IN DiscreteValues
| ASSET AssetName HAS VALUE DiscreteValue

’

ApplicationValues:
APPLICATION ApplicationName IS RUNNING
| APPLICATION ApplicationName IS IN MODE ModeName

i
/*****************k**

System State

v\'**********************/

/* The particular configuration and state of the system is input to
* the tool via this production.
* ’k/

SystemInstance:

52

CONFIGURATION ConfigurationSettings
ASSETS AssetSettings
APPLICATIONS ApplicationSettings

’

ConfigurationSettings:
| ConfigurationSettings ConfigurationSetting

I

ConfigurationSetting:
ParameterKind PARAMETER ParameterName HAS VALUE DiscreteValue

’

AssetSettings:
| AssetSettings AssetSetting

AssetSetting:
ASSET AssetName HAS VALUE Quantity;

ApplicationSettings:
| ApplicationSettings ApplicationSetting

’

ApplicationSetting:
APPLICATION ApplicationName
| APPLICATION ApplicationName IS IN MODE ModeName

’

6.4 Potential analysis support

The field of operations research has developed extensive tools and techniques to solve the
problem of determining optimal or near optimal functionality possible with a given set of
resources. These techniques require that the criteria used to evaluate alternative
scenarios be as precise, rigorous and unambiguous as possible. If the security protections
of a system have been compromised, the goal of maximizing functionality is not a
sufficient criterion for evaluating alternative reconfigurations. Preventing the disclosure
of sensitive data or a takeover of the system (or of some other system networked with it)
can be just as important as maintaining a high level of functionality.

Thus, existing optimization techniques do not apply to our problem. A reconfiguration
decision entails so many unquantifiable and intangible goals, that only a human
commander can make it. The best formal techniques can do is to support such decision-
making; and we believe that the formalisms, methods, and algorithms developed for
operations research can be used to clarify a commander’s situation in many ways—for
example, by providing a level of abstraction at which much of the low-level system
configuration details are hidden. Automated techniques may also be useful for pruning
the solution space by eliminating impossible or infeasible solutions and for presenting
some of the consequences of various reconfiguration choices. These consequences could
be deduced both numerically and heuristically.

53

7. Tech Transfer

Given the current state of too] support for system configuration, we believe that the best
course for this effort is to integrate our work at the level of a model that relates
requirements and configuration parameters. This will at least pave the way for
incorporating our results into actual tools. We have examined EMMA and SSAT. We
believe our model is mostly compatible with their approach and do not see any major
obstacles to integration at the model level.

To integrate (at the model level) with other DARPA projects or with COTS tools, it may
be best to develop our model using the concepts and terminology of the Unified
Modeling Language (UML). The UML diagrams that look most useful for our purposes
are the Class Diagram and the Deployment Diagram (see, for example, [9], Chapter 10).
Package diagrams may also be useful. UML diagrams provide strong support for
recording dependencies among classes, packages, and components. They do not,
however, specifically support the concepts of attributes or specifications that relate
requirements on cyber assets to finer-grained requirements on sub-components. Since
our model has so far been developed independently of the UML language, alternative
representations are certainly possible.

8. Conclusions and Recommendations

8.1 Results

We have proposed a method for helping to make reconfiguration decisions. The method
is neither top-down nor bottom-up, but starts in the middle by abstracting the capabilities
of application modules into various modes of operation. We have examined three simple
examples to indicate how the method might work, and to illustrate both its strengths and
its weaknesses. We also sketched the beginnings of a modeling framework to help put
the method on a systematic basis and to help in the development of support tools.

8.2 Recommendations

Hard work is needed to validate our approach. This work includes: constructing some
basic tool support, so that the specification of the details does not become too
cumbersome, and applying the method to a project developing a system that must be able
to withstand a cyber attack. “Application” development should be part of the project, so
that we could exert some control over the establishment of application modes and
resource needs.

9. References

[1] McCullough, D., Korelsky, T., and White, M. Information Management for
Release-based Software Evolution Using EMMA. in 10th International Conference
on Software Engineering and Knowledge Engineering (SEKE 98). 1998

[2] Ascent Logic, RDD-100 System Designer. 1992.

[3] Vitech Corporation, CORE User Reference Guide. 1993-1996, Vienna, VA.

54

(4]
[5]

[6]
(7]
[8]
[9]

[10]

Rosenthal, D., Hird, G., McCullough, D., and Thomas, R., Final Report on
Composability Methodology. 1995, Odyssey Research Associates.

Rosenthal, D., Samsel, P., and Barbasch, C., Final Report: Information Tools for
Security Protection. 1997, Odyssey Research Associates.

QSS Inc., DOORS. 1999.
Rational, RequisitePro.
StarBase, StarTeam. 2000.

Fowler, M., UML Distilled: Applying the Standard Object Modeling Language.
1997: Addison-Wesley

Object Management Group, CORBA Services: Common Object Services
Specification, Chapter 15, Security Service Specification. Framingham,
Massachusetts, Object Management Group, 1998.

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10135

55

MISSION
- OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

